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Abstract

Current planuing  for the Near Earth AsteroicJ Rendezvous (NNAR)  mission inclucles an orbital
phase about an asteroid. ‘1’he curreut mission desigu stipulates Eros  as the target asteroid. For scieace
],urposes  it is desired to orbit tke asteroid as closely allcl as safely as possible for an extendecl  periocl of
time (100+- days). Ilowevcr,  due to tkc extremely distorted shape of Eros ($s 40 x 14 x 14 km), satellite
orbits are sigtlificant]y  non-]{ cp]crian  and include, among others, crashing,  escaJJiag and stable orbits, all
starti~lg  with local circular velocity and zero eccentricity.

‘1’his  example introduces the problems associated with modeling orbiters about, small bodies whick
are significantly nou-sJdlcroid.  ]{’or J)re-mission p]amiag  purposes it is desired to derive clualit ative] y
accurate scm]arios  of tke orbital phase when the only available information pertaining to such bodies may
be their major dimensions, rotatiom rate and rotation pole.

We propose to model these bodies as constant deasity,  uaiformly  rotating tri-axial  ellipsoids. llc
potential field of such a bocly and its gradieats may be computec] using the classical result of Ivory’s
theorc]n.  Given this system, it is possible to discuss a variety of iutercstillg  classes of orbits about the
body. }First  general  resu]ts  on synchronous, circular orbits about a rotating e]iiJJsoid are discussed. l’hea,
for a few specific asteroid models, families of planar ancl out-of-plane J)eriodic orbits are comJ~utecl. Fiually,
l,ossiblc  silapJificat,ions  to the general dynamical systenl  arc investigated by clcxcribin.g  the tri-axial
e]lipsoid ill terms of a 32 parameter. ~’his Jmovides simJ)]e analytic  exJmessioas for the secular variation of a
satellite’s orbital elements. Jt is noted tkat these secular variations cao be quite large, leading to satellite
motion wkich is significantly aon-l{ep]crian.

We bclicvc  tkat the study of sate]litc motioli  about tri-axial  ellipsoids is a significant toJ)ic. ~irst, as
many ]Jlanned space-science missions wi]] be orbiting small boc]ies with non-spheroid shaJ~cs. %coad, as
this is a non-trivial, nomintegrab]e  open problenl  in astrodynamics. ‘1’his paJ]cr will serve as au
introduction to this problem and preseut some basic results ancl metkocls  of study for tkis problem.

1 Introduction

Mission plaus  are l>eillg lnarlc which visit and orbit  spacecraft about various asteroids and other
sll)all bodirx+, suc.1] as c.omek.  Due to the slrlall size of Iriost asteroids, their  shape  tcncls to difler
lnarkcd]y  fron} the spheroicl  sha]m found for all the planets of the Solar systcIII and lnost  of their
moons. Resulting from this gcolnctric  difference, satellite dyllal[lics  about slliall  Lodics tnnd to bc
quite different, than ‘(classical” orbiter  missions. ‘1’his ])apcr introducm  the tri-axial  ellipsoid, a
wcdl-known  ancl easily specified Inodel, as a basic mode] for a slna]l body gravitational field. ‘1’lIc
fundamentals of satellite dynamics about, a general  ellipsoid are studied. ‘1’hcse incluclc zero
vc]ocity surfacm,  synchronous orbits, pc!riodic orbits and ana]ytic  aJ)proxi~llations. Also, a
classification schcune  is introducml  for ellipsoids, dcpcndcnt, 011 the stability of certain orbits  about
the body.
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2 Model Specification and Derivation

q’hc tri-axial ellipsoid model  of a slnall  body is easily sl~ccificd once the size, shape, density and
rotation rate of a small body is given. All these quantities Inay be estimated or infm-ed,  to SOIIIC
degree of accuracy, froln ground-based measurements. ‘1’he ellipsoid IIIodcl  would not be usecl in
operation al scenarios, as spherical harlrronics  are prcfcrrccl  in that context, but  is very useful in
characterizing the qualitative dynamics which satellites will encounter at asteroids or other
irregularly shaped  bodies.

2.1 Physical Characteristics

If t$hc size and shape of a slnall  body is dct,rmninrd  (via brightness Inagnitudes  and their variations
ancl/or  occultations), the resulting dilnmsions  of that body are usually given in terlrls  of
%rcad-box”  dimensions, i.e. they specify the size of the bread-box which would contain the body.
‘1’IIc actual shape and slnall  scale characteristics usually cannot bc cleterlnincxl until  optical or
radar i~naging of the body is obtained. Given this alr]biguity,  there are a wide range of possib]e
shapes  the body Inay have. Suppositions range froIn ellipsoidal shaprx  to du~nbbel] shapes. ‘1’he
tri-axial  ellipsoid (or the ellipsoid) is a useful rnodc]  as it has a wide range of possible shapes
generated by adjusting the shape parameters. Varying these, the body lnay be dcforvncxl from a
sphere to a cigar to a pancake. ‘1’hc ellipsoid is sirnp]e to specify geometrically, all one needs are
the three lnajor axes. Given a constant density for the asteroid and its shape and size, there  are
classical formulae for the gravitational potential and its first and second ]Jartials.  ‘1’hmc forrnu]ae
all entail  evaluating elliptic integrals, for which sirnp]c and robust, nul[lerical  procedures exist.

If the bread-box size measurements of a body are u x b x c, whcm a > b ~ c, then the
associated tri-axial ellipsoid has major semi-axes of a/2 x J/2 x c/2. l,ci a = rr/2, ~ = b/2 and
y v c/2. ‘1’]IM  t])c ellipsoid is spccifrcd  by its major seIni-axes  a x /3 x -y, where a > /? > -y.

Given a constant, dcursity  p for the body, its gravitational paralnctm It is cornputrxl as:

(1)

where G is the gravitational constant and ~a/3~ is the volume of the ellipsoid.
Now define  a bocly-fixecl  coordinate systcrn in the ellipsoid. “J’he  x axis lies along the largest

dilncnsion  rr, the y axis lies along its interlnediate cliJllension ~ and the z axis lies along its
slnallc.st dil)lension ~.

‘1’his analysis assulnes  that, the ellipsoid rotates uniforInly  about its largest ~noInrx)t  of
inertia,thus the ellipsoid rotates uniformly about the 2 axis. ‘1’he rotation rate of the ellipsoid is
denoted as w ancl lnay be infcrrccl fro~n  grouncl lncasumnents,  It is possib]c to gcneralim  this
model to an ellipsoid with nutation and preccssionj  but this is not pcrforlncd  in this analysis,

2.2 Gravitational Potential

‘1’IIc gravitational potential corresponding to a constant clcnsity tri-axial ellipsoid is classically
known as a function of elliptic int,cgrals. l’here  are two forlns  of the potential, dependent on
whether the point, in question is in the interior of the ellipsoid or lies exterior  to the ellipsoid.

If in the interior of the ellipsoicl,  the gravitational potcnt,ial  at a point z, y, z is (Refcrencc
h4acMillan):

(2)

(3)

(4)
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Note that V ~ O always.
q’hc generalization of this potential to the exterior of the ellipsoid is pcrforInml using Ivory’s

thcorwm.  SIX M ac.M ill an for a derivation of this result. ‘1’hen LIIC gravitational potential of an
ellipsoid at a point  x, y, 2 exterior to the body is:

cm
V(x, y,z)  = ~

/4  
A(r>Y>z)

@(z, y, 2; u)x~;-)

@(z, y,z; A(x)y, z)) =  o

(5)

(6)

where @ and A are defined as before. ‘1’he paraInetcr A is a function of z, y, 2 and is solvecl for
iln])licitly  from Equation 6 and definm t,hc ellipsoid passing through the point x, y, z which is
confoc.al  to the bocly ’s ellipsoid, Equation 6 is a cubic equation in A and has a unique positive root
~ whcmcver

q5(x, y,z; o) > 0 (7)

(when  x, y, z lies outside the ellipsoid), has the root A = O when @(x, y, z; O) = O (when x, y, 2 lie on
the ellipsoid surface), and is not needed in the interior of the ellipsoid (when ~(x,  y, 2; O) < O).
‘1’IIus  the potential defined by llquation 5 is valid for the exterior and interior of the ellipsoid as
long as J z O whenever in the interior of the ellipsoid.

It is ilnportant to note that the potential is only twice differentiable over the entire space,
there being a discontinuity in the second partials when passing froln the exterior to the interior of
the ellipsoid, or vice-versa (Reference MacMillan). This is imlnecliatcly  rrnderstoocl  when noting
that t}lc potentia]  solves IJaplacc’s equation V2V = O outside the body and I’oisson’s  equation
V 2V = 4n inside the body. l)cspite this, trajcc.tories which pass fro][]  exterior to interior or
vic.c-versa are well defined ancl conserve the existing inkg,rals  of motion.

3 Equations of Motion
‘1’hc equations of luotion  of a particle attracted by au clli])soid can be writtcrl  as:

. .
i: = – vi (8)
.:y= -- VQ (9)
. .
2= – Vj (lo)

where the coordinates i, j,.2 are rcfcrwnced  to au inertial fralnc.
Note that a transformation to the body fixed coordinates r])ust be rnadc to evaluate the

part,ials  of V. ‘1’o alleviate this cumbersome transformation, transform the equations of motion into
a coordinate frarnc  rotating at the same uniform rate, w, as the ellipsoid. ‘1’his results in the
equations of Ir-rotion:

‘1’hc full partial for V#. is colnputed  explicitly as:

Vr(x, y,z)  = ~r4  
A(T,YF)

4.( X, Y,2; U)-$T – 3#@,y,2; A)-&
Note, however, that @(x, y, z; A) R O by definition, yielding a sirnplificcl cx])rcssion

(14)

3/1 m
V,(l!, y,z) =  ~

/
%m(x, y,z; u)&

A(T,y,z)
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with similar formulae for the ot,hcr first partia]s.
IL is ilnlncdiately  clear that there  is a Jacobi  intc,gra] for these equations:

;(;2+Y2+42)  -  ;+’ +y’)+  V(z, y,z) = --C’, (16)

‘1’hc paralncter C is a constant and is termed  the “energy” of the systmn

4 Normalization of the Equations of Motion
‘1’0 give the discussion clarity and generalization, it is uscfu] to normalize the equations of motion
via a Lilllc and leugth  sc.alc. l)cnote  the scale tjilnc to Lc 1/w and the I]ol)-dilllcllsio)lal  tilnc as T:

, /
r= Wt. (17)

Choose the largest  semi-axis of the ellipsoid, a, to be the length scale and the lloll-clilI-leIlsioIlal
s])ac.e variables to be i, y and .i where

2 =-> x/@ (18)

y z: y/n (19)

i = 2/0. (20)

Applying the normalizations to the equations of lnotion  yiclcls:

‘1’hc potential V is now defined  as:

(24)
—

A(v)  =  ~W)(~2  -t V)(72  • t  v) (25)

(26)

‘1’hc paralnctm A >0 is solvecl for fro)]]  ~(i!, y, .2; A) S O whcucvm @(i, y, 2; O) >0, else A = O.
‘1’he ratio d = p/(w2a3) paralrlcterizm  the cllipsoicl and is a function of the c]lipsoid shape,

size, clcmsity and rotation rate. Note that these are all quantities which ]nay bc inferred, to SOIIIC
clegrm of accuracy, froln Earth basccl obscrvatlions. ‘1’he paralneter 6 is, effectively, the ratio of the
gravitational acceleration to the centripetal acceleration acting on a particle at the longest end of
the ellipsoid, assuming that the ellipsoid has all its mass c.oncxmtratcxl at the origin. Should the
cllilmoid be a sphere, then  it is the true gravitational acceleration to c.entripetal  acceleration ratio
on the equator. See Appendix A for a listing of this parameter for so]ne known asteroids. Note
that the dcmsity of asteroids ancl comets is a poorly known quantity iu genera], thus we have
assurlled some nominal values in the following analysis.

Given the shape, size and rotation rate of an ellipsoid, there  is a Ininirnurrl  6 for the body
bc p]lysically  feasible. S11OUICI the density of the body bc too small, or the rotation rate be too
large,  tl]cn the body may not  be able to hold partic]cs  on its surface by gravitational attraction

to
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alone. In this context, a limit on 6 lnay be related  to a lnilli]nu)n  density for the body to hold itself
together gravitationally. ‘1’his qucstiou  is discussed [ater  in the context of synchronous orbits.

It is also possible to normalize the potential V so that it is analogous to a point mass. ‘1’his
~nay be perforlned  using MacLaurin’s  ‘1’heorem (Itcfcrcnm  h4acMillau)  which states that two
confocal ellipsoids may have an equivalent exterior gravitational potcntia]  if the respective masses
associated with each potential arc properly scaled, or that

and All and M 2 are the respcxtivc  masses  of the ellipsoids. ‘1’his norlnalization  is not introduced
into the analysis as it destroys the physical significance of the ellipsoid clilnensions and leads to a
Iuorc difhcult  evaluation of the elliptic integrals.

‘1’o  state the final form of the equations, drop the hat notation, assuIning  all quantities to be
norlnalized,  and define a IIlodified  force potential (J:

i:—2y = [Jr (33)
y+- 2i = (JY (34)

i = u. (35)

u  = :(2? +  y2) –  W(x, y,z)
L

(36)

(37)

(39)

(40)

‘1’he  paralnc.tcr  ~ >0 is solved for froln +(x,  y, z; A) s O w]lenever  q$(x, y, 2; O) >0, else ~ = O. Also,
the inequalities 1 ~ /3 z -y are assumed to hold.

5 Symmetries in the Equations of Motion
‘1’here are a number of syInInetries  present in theso equations, clue to the for]n of the potential U.
First note  the three-fold sym~rletry  of [J:

/J(x, y,z) == [J(Az, i,y, *2). (41)

‘1’lIis holds as lJ ancl A are functions of X2, yz a.ud 22 ouly.
IU tmns of the full equations of Inotion,  and the spat.c and ti~ne coordinates, the equations

arc invariant under the transformations:

(x, y,2, T) + (x, y,-z, T) (42)

(z,  y,z,7) + (x, -y, z,-T) (43)

(Lr, y,z, T) + (-x, y,z, -T) (44)

(z, y,2, T) + (-x, -y,2, T). (45)
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All these  transformations may be co~nposed onto tack other to find additional invariant
transforlnations,

Another way to view these transforlnations is as how they act  on initial conditions ancl i,ilne.
Motions starting froln the following initial condition pairs can bc transformed into each other
under  tho appropriate transforlnations given above.

‘I1lIC rcvcvsal  of the tilne sign inclicatm  that the trallsforlncd  Illotion goes backwards in tirnc.
A spmial  subset of these initial conditions are thoso which transforln  into thclnselvmj

lcacling to lnotion  which is sylnlnctric.  about a line in a plane. Should any orbit have two such
syln~nctlries) then it is a periodic. orbit.  ‘1’hcm arc cliscusscd later.

6 Zero-Velocity Surfaces
‘1’IIc first topic of qualitative interest arc the zero-vcloci(y surfaces and their  interpretation. Recall
t,hc Jacobi integral (Equation 16):

‘J’lIc quantity 7’ is the kinetic enmgy with respect to the rotating reference fral[le, [J is the force
potential (Il}quation 36) and C is the energy constant, defined  by the satellite initial conditions.
Note that, by definition, U >0. ‘]’bus, if C <0, then 7’>0 and the satellite can never c.oInc to rest
in the rotating fralne.  lhrthcr, there arc no a prior2 bounds on where the particle may not travel.

Conversely, should C >0, then there is the possibility that, 2’ = O on some surface in x, y, z
space, called a surface of zero-velocity. ‘1’hesc  surfaces arc itnportant as they partition the space
into regions of allowable (?’ > O) and unallowab]c  (7’ < O) Inotion.  Of special interest are any
surfaces whit.11 guarantee that the particle is trapped in the vicinity of the cllipsoicl or is boundocl
away froln the ellipsoid.

As is the usual proc.edurc in such analyses, first consider the mro-velocity surface when
C >>0 and then  discuss the changes in these surfaces as C decreases towarcls  O. Setting 7’ = O, the
ecluation to SOIVC to find the zero-vcloc.ity  surfaces is:

~(x’ + y’) - W’(z, y,z) = c. (51)

Scc ]rigurc 1 for a heuristic picture of the Zero-Velocity Surfaces as projcctml  into the z-y  plane  for
a variety of energies,

First recall that V(*, y, 2) <0. Then note that V(.T, y, z) ~ V(O, O, 0), thus if
C+- 6V(0, O, O) >0, then there is only one solution to this equation, a perturbed cylinder of raclius
T = ~-z, y,2)  < @~. As C * co, or as 2 d +m, then r ~ ~. Motion is allowable
outside of this c.y]indcr only. As C dccrcases  this cylinclcr moves inward.

When C = –6V(0, O, O) another zero-velocity surface bifurcates at the center of the ellipsoid.
As C decreases further this zero-velocity surface cxpancls and, depending on the paralnetcrs of the
cllipsoicl, I[lay eventually intersect and then surround the ellipsoid itself, leaving space between the
zero-vcloc.it,y surface and the surface of the ellipsoid. At this point, Inotion is allowable in the space
above the surface of the c]lipsoid, and such motion cannot escape from the vicinity of the ellipsoid.
As before, there is still a zero-velocity surface which separates the space near  the ellipsoid from the
space far froln the ellipsoid. ‘J’hus there  is a band surrounding the ellipsoid where motion is not
possible.
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Figure 1: Zero-Veloc.ity Curves

As the energy increases further, these  two surfaces will touch at two syInInetric  points
the x-axis. ‘J’hc location of these points ~nay be computed by solving the algebraic cquatio~l:

Ur(+xo, o,o)  =  o

xo#o

A = x:–l.

along

(52)

(53)
(54)

‘J1lICSC ]Joints  correspond to relative equilibriuln  points in the dynamical system and are discussed
in Section 7. For C decreasing fro~n  this value, particles may then travel between the space close to
the ellipsoid and the space far froln the ellipsoid.

As the energy decreases further, the zero-velocity surfaces projected in the x-y plane shrink
to two syIn~nctric points along the y axis, found Lry solving the algebraic equation:

uu(o,  +yo,  o) =  o (55)

YO#o (56)
A = y:–]. (57)
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Again, tJIcse arc equilibrium points  and arc clisc.ussccl ill the following section. For decreasing C
(]IC zero-velocity surfaces then do not intersect the x-y plane  and only exist in the out-of-plane
space. As C ~ 0+”, the zero-velocity surfac.cs shrink and Inow to the points x = O, y = O, z = *CO,
where they disappear when C = O.

Note that these  zero-velocity surfaces only have practical application when one considers
clircc.t orbits about the ellipsoid in inertial space. RxArograde orbits (in inertial space) generally
have 7’>>0 with respect the the rotating fralnc.  ‘1’bus, wllilc they  often prove to be quite stable,
their energy is such that there is no zero-velocity barrier between them and the ellipsoid. ‘1’his
points to dcficicnc.ies in using IIill stability as a colnp]cte  characterization of stal]ility  of motion.

7 Equilibrium Points
in studying direct orbits  about, an ellipsoid in an inertia] fralnc,  it is of interest  to find circular,
synchronous orbits. in the rotating reference fralne,  these synchronous orbits arc equilibrium
points of the equations of motion. For ellipsoids of revolution about, the equator (a = /3), there are
an infinity of suclI points. For a general tlri-axial ellipsoid, there arc at lnost  four such points
exterior to the body.

Algebraically, these points arc found by finding all solutions to the equations:

UT(XO, y., 2.) = o (58)

Uy(xo, yo, zo) = o
uz(~o, %,zo) = o.

(59)
(60)

It is ilnlnediate]y  apparent that [ Jz = O if and only if z = O. ‘1’hus the problmn lnay be reducecl to
finding all solutions of

[ rX. 1–: dv 1, (1+ v)A(v)  =  0 (61)

[/

m dv
~. 1–~ ——

2 ~ (P2 :- v)A(v) 1 ==0 (62)

$$(zo, yo, o; A) = o. (63)

Solutions to these equations are discussed in the following subsections.

7.1 ]nterior  Equilibrium Point

IPirst  consider the solutiou  XO = y. = 0, q’his solution is well defined  as the potential and the first
and second partia]s are well definccl in the interior of the ellipsoid. Recall  again that A E O
whenever inside  the ellipsoid. Call this the lntcrior Ec]uilihriuro ])oint and denote  its coordinates
aSX~=yiZO.

7.2 Saddle Equilibrium Points

Nexi  consider the solution when XO ~ O and yO = O. ‘]’hc  equation to SOIVC in this case rcduccs  to:

I=um “vJ2 ~0 (1 +- v)A(v)
(64)

A. = x:–l. (65)

Note that, the solution AO)  and henm  XO also, Ioay be cxpressccl  in part by cl]iptic  functions. We do
not  usc this propmty  cxplicit]y,  but instead solve Equation 64, when necessary, using the i~nplicit
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function thcormn  ancl Newton iteration. Call thcm  the Saddle Equilibriuln  ]’oints,  for reasons
which will become  obvious, and denote  their  coordinates by +x$ and y, = O.

It is interesting to note  that, these equilibriuln  points  arc not guaranteed to exist. If the
inequality

is violated,  then t,he saddle  cquilibriuln  points do not exist,  either  interior or cxtxxior  to the
ellipsoid. Note  the following inequality and identity,

(66)

(67)

‘J’his irnplics  that, a ncxessary condition for the inequality to be violated, and for the saddle points
to not exist,  is 6<1.

Should lnequa]ity  66 bc violated, then it is i]nagined  that the ellipsoid would not, be
physically stable as a particle placed at the cnd of the ellipsoid (at, x = +a) would fly off due to
ccmtripcta] acceleration. Otherwise the body must have an internal cohesive force in addition to
gravity.

‘1’his supposition may be used to derive a Ininil]lull] dc.nsity for a given ellipsoid shape, size
and rotation rate. First evaluate  the minimuln  6 for the saddle points to exist:

‘J’hcn  the lnini]nurn  density is solved for as:

(68)

(69)

in Equation 69 the quantitim @ allrl y are normalized, while G and w have their  original
rlilncnsions  (G’= 6.672x 10 -8 c~n3/(gs2)).

7.3 Center Equilibrium Points

Next consider the solution for *O = O and yO # O. ‘1’hc equations to solve for this case reduce to :

(70)

(71)

Again, the solution for &, and yO may be expressed ill part by elliptic functions. Call these
equilibriuln  points the Center  Equilibrium Points. ‘J’heir coordinates are denoted as XC = O and
d:yc. ‘J’hey are important, for characterizing the asteroid with respcc.t to satellite motion.

Similar to the sadclle points, there are cases when tllcse equilihriuln  points do not  exist. A
ncccssary  condition for these points to not exist is that, the saddle points not exist. We assu)nc in
general that these  cquilihrium  points exist in the ellipsoids unrlm considci-ation.

7.4 Other Possibilities

l’inally,  considcw the solution for XO # O and yO # O. ‘1’hc equations can only bc satisfied in this
case if ~ = 1, when there  will bc an infinity of possible cquilibriuln  solutions all at a radius of
r = -1. ]n this c,asc there  is also a new integral  of lnotion,  conscrvat  ion of angular ]nolncntu~n
about the rotation axis of the ellipsoid. ‘J’he ellipsoid is thc]l all oblatc  (or pro]atc)  spheroid and is
not considered here.

9



8 Stability of the Equilibrium Points

“1’hc stability of the equilibriuln  points is an item of int,cmst, as the phase  space surrounding these
points  may be characterized once their stability propcrticw  arc known.

Stability is inferred from a study of the solutions to the variational equations about these
points. in general, the variational equations arc s(lat,ed as:

:—z~ =  Urclox  + Urvloy +- UTZIOZ (72)
~+z~ = Ugrloz  + Uvyloy  + Uyzloz

UAN + UZJOY +- Uz.loz.

(73)

.i= (74)

‘1’hc partia]s are all evaluated at the equilibrium points. It is silnp]e to show that all the cross
partials are zero at the equilibriuln  points, yielding the silnplificcl  set:

$–zy = Urrlox (75)

~+2i = (Jggloy (76)

i= ZJZ.102. (77)

l)irect computation shows that Uzz 10<0 for all planar points and hcmc.e all small
out-of-plane oscillations about the equi]ibriu~n  points are stable. “1’hus  we concentrate on the
in-plane  stability of the points.

Forvn the characteristic equation corresponding tc) the variational equations to find:

a4 + [4 — U..rlo — Uyylo]  02 +-  Umlouyyl.  = o (78)

where a is the eigenvalue  of the syste]n. ‘1’he~l the stability conditions for the cqui]ibriuln  points
may bc reduced to the following conditions:

lJmloLJyylo  > 0
4 – [JT& – tJYylo > 0

( 4  –  Um.lo – Ugylo)z – 4LJ..*I.UYYI0 > 0.

‘1’o c.olnpute the second partials of the function V, c.onsidm the terln  Vrz explicitly:

(79)

(80)

(81)

(82)

Now the fiual ter]n  in the equation does not disappear, as it did for Vr. lho]n  the
identities:

+(x,  y,z; A) = o

~d($~; ~) ~ o——. —
ax

the general expression for & lnay be inferred:

Silni]ar  expressions arc found for Ay and A,. ‘1’hesc partials simplify at the equilibriu]n  points.
l’inal]y, with the simple expressions:

(86)

(87)

following

(83)

(84)

(85)

all the elelnents  needed to compute V*.. are available. l’he expressions for Vyy an C1 Uz are
computed similarly.

Now the stability of each of the equilibrium point,s is investigated in turn.
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8.1 Interior Equilibrium Point

As A z O for the interior point, the partials silnp]ify  to:

J
m

[Jrr[i
du

= 1–: ——
, ( 1 +  u)A(u)

/

co du
llggli = 1 – x —

2 ~ (P2 i u)A(u) “

(88)

(89)

1( is ilnportant to note  that, unclcr the assmnptions  stated earlier,  both of these quantities are
ncgatfivc. If not, then the saddle  and perhaps the ccn(er equi]ibriuln  points would not exist. Given
tha{ these arc negative, it is obvious that, the stability conditions 79- 81 arc all satisfied.

‘1’here is actually sornctfhing  ]norc powmful occurring in this case. Exa~nination  of the first
l)artials  in the ellipsoid interior and the second partials cvaluatccl  in t,hc vic.illity of the origin Snow
the following equality:

tJr(z, y, Z) =  lJTT[i~ (90)

with si]nilarrcsults  for y and z. l’bus, for motion  in the interior of the ellipsoid, the general
equations of motion arc tirneinvariant linear clifferentia]  equations. ‘1’bus, the solutions obtained in
the vicinity of the origin are valid throughout the entire interior region of the ellipsoid.

lJndcr  the nominal assumption that, UTTli, Uvyli <0, motion in the interior of the ellipsoid is
a stable, harmonic motion. It, is usefu] to briefly investigat,c  what the stability conditions are when
the nolninal  assulnption  is violated. First note the following inequalities:

Urz[i < 1 (91)

Uyy\i < 1 (92)

‘J1hcxc  arc easily established by inspection and 11oIc1  for all possible para~ncter  values. From these
inequalities it is clear that the stability conditions 80 and 81 are always satisfied. IIowcwer, should
ZJrrli >0 whi]c  UVYl~ <0, i.e. should the saddle  points  not, exist but, the center  points exist, then
all lnotion  insiclc the cllipsoicl is hyperbolic. ancl will cvcmtual]y  exit the interior. Note that if both
the saddle and center points do not exist, [Jrrli >0 and Uvyli >0, then the interior motion is
st,ab]c and harlnonic  again, even though the body is not  likely to exist naturally.

8.2 Saddle Equilibrium Points

Recall that the saddle points have coordinates z, # O and y, = O. Substituting these  values into
the the second partial derivatives yields:

m
U.rl,  = 1 – ~

/

du 36
2  ~, ~+ u)A(u) ‘ -  A(A.)

(93)

Uyyl, =
~_g m

2 /~, @ +t)A(~”
(94)

Again, }, and x, are solved for from the equations:

~=3ijmdti
/2 ~, (1 + v)A(v)

(95)

A, = x$–l. (96)

Si~Il]Jlifying  the second partials yields:

UT,I, = ~
A(J, )

(97)

m
Uyyl. = 1 – ~

/

du
(98)

2 A, (P2 + u )  A ( u ) ’
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Given that @ <1, then UYY13  <0, as can be inferred fro~n Equation 95. It is also clear that
UrTl, >0. “]’hus  stability condition 79 is clearly violated while condition 81 is satisfied. ‘l’he status
of condition 80 is not as c.lcar. It can be simplified to SO]JIC extent, however.

lrirst  notm the following identity clcrived ill Appendix B:

1

/[

lml 1 1

1
du_.— — —  — _—— _.

A(A) ‘5A ]+. ti+pqu+”7qt,  A ( w )

‘J’his Inay be applied to condition 80 to find the silnplified  condition:
Ix]>!
/[

1 1

1
du

2 A,
— + —  —
l+U T2 + u A ( u )

(99)

(loo)

‘J’his ex])ression  lnay  be reduced LO so]nc silnp]er  sufllc.icncy conditions. IJowevcr,  these would still
cmtai] solving for the parameter &, ancl hence would not greatly silnp]ify the evaluation of the
inequality, Also, this stability condition does not change the basic instability type  of the saddle
points, which is hyperbolic, ‘1’bus, any satellite placed at or near  these points will be influcnc.ecl
lnost,]y by the hyperbolic. stable  and unstable ]nanifo]ds,  and its gwleral Irlotion will be to depart
froln the vicinity of the point.

As seen in Section 6, the sadcllc points are the boundary point,s between regions of allowable
lnotrion close to and far from the ellipsoid. ‘1’bus, lnotion  starting close to these points will in
general either be trapped near the ellipsoid or trapped away fro]n  the ellipsoid. A nothcr  way of
stating this is to note that one pair of each of the point’s stable and unstable lnanifolds  lies close to
tllc ellipsoid while the other  pair lim away from the ellipsoid. ‘J’bus, when passing close to these
points  in phase space, tllc final motion of a satellite will be C1OSC to or far from the ellipsoid
dc])cnding upon which pair of manifolds the satellite is influenced by.

8.3 Center Equilibrium Points

Recall that the center points have coordinates x. = O and y. # O. Sul~stituting  these values into
the the second partial derivatives yields:

Again, J, and y, are solved for from tk equations:

(101)

(102)

(103)

A, = y:–pz. (104)

Siln]jlifying  tile seconcl partia]s yields:

U3TIC  ==
,_y mI dtl

2  ~c (1 + u)A(u)
(105)

36
Uvvlc =  —

A(AC) “
(106)

~:ivcn that @ < ], then UTTIC >0, as inferred froln Equation  ] 03. ]t is also clear that
l]yyl, >0. ‘1’hus stability condition 79 is clearly satisficcl.  ‘1’he status of conditions 80 and 81 arc
not, as clear, and Inay or lnay not be satisficcl, depending on the para~[mtc.rs of the ellipsoid: 6, j?, y.

A fcw notes may be made concerning the order in which conditions 80 and 81 lnay be
violated. Assume  that the parameter 6 is fixed and that the pararne.tcrs  @ ancl ~ will be decreased

12



from ~ = -y = 1 (keeping y < ~), thus deforlning  a sphere into an ellipsoid. ‘1’aking l~quations  105
and 106 to the limit for a sphere  yields

(107)

(108)

Under these  lilnitsj  both condition 80 and 81 are satistlcd.  Given this,  and that condition 79 is
satisfied, it is cwidcnt  that condition 81 ~nust be violated hcfore condition 80 ~nay be violated when
dcforlning  a sphcm  into a gcllcral ellipsoid. ‘1’lIus, as a body is progrcssivc]y deforlncd from a
sphmw,  it is stability condition 81 that de.lincat,es  between whether the c.entm points  are stable or
unstable. If condition 80 bccomcs  violated subsequently, it will not have as large a qualitative
eflcc.t as it will only pertain to the oricmtation  of the stable  and unstable IIlanifolds of the center
points and will not, aflcct  the instability type.

For ellipsoids where all the stability conditions are satisfied, the center  points are stable in
the sense that most motions started near them  will oscillate about the center  point indefinitely.
For ellipsoids where the stability condition is not satisfied, t]le center points bccolne  colnp]cx
unstable. ‘1’hcm,  any motion started near the center  point will eventually spiral away fro~n the
center  point. As there  are no isolating zero-velocity surfaces associated with the center  points, the
final lnotion  may either fall onto the ellipsoid or escape froln the ellipsoid.

Whether the center  points are stable or unstable has a large influence on the stability of
near-sync.])ronous orbits about the ellipsoid. When the center  points arc stable, lnotion  started in
near  synchronous orbits tend to relnain  boundecl  away from the cllipsoicl, as the region of regular
curves in phase space near the center points makes passage through these curves to the surface of
the ellipsoid difflc.ult. It is noted in passing that near-circular orbits ahout ellipsoids with stable
center  points  seem to bc well behaved in general.

‘1’hc  same  cannot be said when the center points  are unstab]c.  Now the phase space around
the center  points is influenced by the unstable spiral manifolds. ‘J’he generic. motion under  the
influcnc.e of these lnanifolcls is to spiral away froln the center ]~oint.  It is ilnportant to note that
tllc s})iral the satellite will follow tcncls to act in both the angular and radial directions. ‘1’hc
generic lnotioll  of a satellite along thcm  unstable )nanifo]ds secnns to either crash into the ellipsoid
or to suflcr rcpcatcd  C.IOSC approac.hm to it. I)LIc to the dist,ortcd shape  of the cdlipsoid, these C1OSC
approacl}cs lnay cause the satellite to gain hyperbolic speeds and escape the ellipsoid. If the
lIlotion is continued through crashes with the ellipsoid the gmlcric. final lnotio~l associated with the
unstab]c  ]I]anifold  is a dparture from the vicinity of the ellipsoid. ‘1’bus, near-synchronous orbits
about ellipsoids with unstable center  points can bc characterized as being unstable in general. It is
not, unc.o]nlnon  to observe a near-synchronous, near circular orbit crash onto an ellipsoid (with
unstab]c  center points) within a matter of days.

in this paper ellipsoids with stable  center  cquilibriu~n points arc called ‘1’ype I ellipsoids,
while those with unstable center equilibrium points arc callccl ‘J’ype.  11 ellipsoids. It is evident that
the crashing problcxn associated with ‘J’ype 11 ellipsoids is related to near synchronous lnotion
about the ellipsoid. ‘1’bus, when orbiting about, a ‘1’ypc 11 ellipsoid, it is in general hcst  to avoid
near  synchronous orbits. An effective way of doing so is to fly in a retrograde orbit  about the
cllipsoicl, As will be seen later, retrograde orbits arc associated with stable orbital motion.

8.4 Computing Ellipsoid Type

It is of interest to characterize when an ellipsoid is of ‘1’ype 1 (stable center  points) and when it is
of ‘1’ypc 11 (unstable center  points). in general, this characterization is a function of the three
paralneters: /3, ~, 6, Given these numbers for any ellipsoid, it is possible to colnputc  Stability
Condition 81 and check which catagory the ellipsoid falls into. “1’his condition may be represented
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as a two-diinensiona]  surf  am in the tllrce-dilllcllsiollal  space /?, -y, 6. in general, this surface may not
IIC clcfincxl cvcrywhcrc,  as there may hc some colnbinations  of/? and y which are never ‘1’ype  11.

“1’his procedure of colnputing  ellipsoid type may be simplified for some cases. First note that
a sufficient, condition for an ellipsoid with paralneh-s /?, y ancl 6 to he of ‘1’ype 11 is t}lat the
c.orresponcling  ellipsoid with y = ,B, with 6 held constant, be of g’ype 11. “1’his result is not
established here, but can bc verified by computation. ‘I’l}is  silll]jlifies tllc]lreseiltatioll solnewhatfas
the two clilIlellsiol)alsLlrface  in the three dilnensional  space is now collapsed into a one dimensional
surface (a line) in the two rli:nensional  sl)acc ~,6. The ellipsoid is, in this case, an ellipsoid of
revolution. It is not,  however> an oblate  or prolate ellipsoid, as its axis of rotation is perpendicular
totlheaxis ofsy]n~netlry. Ratherit issimilar toa ci.gar lyingon atablcwith itsrotation axis
perpenclicu]ar  tothetab]e.  q’here  are simplificationsto the form of the stability condition fortllis
case.

lrirstllote tllcfollowirlg  results  fortlle center  eqllilil>rilllll ]Joillt, assllrI-lillg  tllaty=~< 1.
‘J’hcse rcsult,s ll-)aybe illferrcd frolntlle res\lltsgivell in Appendix B.

U, TIC = 1–3! /
rlw_—. -— ——— —-—

2  AC (I+u)A(u)

=  ‘(’-  A:C))

b

36
(lVYIC  =  —

A(A,)

A ( u )  =  (82 + U) W+- U

(109)

(110)

(111)

(112)

Additionally, it is now possible to reduce the elliptic integrals to quadraturcs in tcrlns of known
functions. ‘1’he equation from which we solve for ~C is still, however, transcendent].

‘J’hc condition for stability (Equation 81) now reduces to:

] ‘ %+ici)
subject to the constraint

36

- [

Jmz 1 Ii-m— ———
-Z (1 – p)(p + A.) 2 ( 1  –  /32)3/2

111 —---—
l–~ 1

(113)

(1 14)

(115)

“1’hc  curve for this condition has been generated and is shown in Figure 2. “1’he Ineaning  of
this  curve is as follows. Given the three paralneters for an ellipsoid, ~, ~ and 6, if the @ and 6
values fall into the l’ype  11 portion of the surface (lie beneath the curve), then the ellipsoid is a
‘1’ypc 11 ellipsoid (assulning  that ~ < /3). Note that if the values fall into the ‘I1ype 1 portion of the
surface, then the ellipsoid may still be a ~’ype  11 ellipsoid if y < ~. Finally observe that the curve
dots not extend all the way to ~ = 1, but stops at a value of@ ~ 0.928. For all /3 greater than this
value, the ellipsoid with /3 = y can only be of Type 1.

Note that 6 is a function of 11, a and w 2 . ‘1’hus 6 will decrease if the mass (or density) of the
clli])soid decreases or if the size or rotation rate increases, ‘l)hese effects tend to make a ‘1’ype 1
ellipsoid into a ‘1’ype 11 ellipsoid.

9 Periodic Orbits

Now our discussion focuses on a few families of periodic orl)its  c.oll)put,ecl for satellite lnotion  about
an ellipsoid. ‘1’hesc  results are all numerical and arc co]nputcd  for only a few specific ellipsoid
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Figure 2: Minimum 6 for a ‘J’ypc 1 ellipsoid vs @ (y= /3)

sl)apcs and parameters. Five planar periodic orbits are briefly clisc.ussecl, three  of them associated
with  the c.enter and saddle equilibriu]n  points respectively, and the remaining two being
%car-circular”, one direct and t}le other retrograde with respect to inertial space. Finally a fa~nily
of tllree-dilnensiona]  periodic orbits is co~nputcd  and discussed.

in colnputing  the periodic orbits, the families are either  terlninated once an intersection
with the ellipsoid occurs or when the continued colnputation  of the family becomes too difficult.
‘1’he terlnination at an intersection with the ellipsoid is noi  necessary, as intersecting orbits are well
dcflnecl and even conserve energy. The fa~nilies are terminated due to some questions associated
with orhit falni]ies  that intersect the ellipsoid. ‘J’he main question pertains to the conservation of

. .
stablllty propcrt]es  when a farn]ly of perlodlc  orblt,s mtersect,s the e]llpsold. ‘1’he queshon  arises as

. . . . . ,

there is a discontinuity in the second partials of the potential function across the ellipsoid surface.
‘1’hcsc  partials are used in colnputing  the variational equations and hence the stability of the orbits.

A way in which this problem Inay be avoided would be to rescale the ellipsoid to a slnaller,
confocal ellipsoid with a larger mass, as is detailed in Mac], aurin’s  “J’heorem (Reference hIacM).
For this study, this process was not  pursued as the physical character of the ellipsoid is lost and as
the colnputation of the elliptic integrals becomes more ti~ne consulting as the size of the ellipsoid
is shrunk. An investigation of these questions may be of interest in future analyses.

9.1 Planar Periodic Orbits

‘J’hese orbits all lie in the ellipsoid equatorial plane (.z s O). ‘J’he near-circular direct and
retrograde orbits have two distinct symmetries, and thus have a quarter-sylnmetry  in the plane
si~nilar  to IIill’s famous Variation orbit. (}lenon).  ‘1’he following pairs of boundary conditions are
used to compute these orbits:

Zo = xl)

Yo=o
io =0

Yo = Yo

(116)
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Z1=O
?41 = VI
il = i!] (117)

Y1 = 0
Should any orbit  satisfy both  of these boundary conditions, then that orbit lnay be extended

into a periodic orbit symmetric. about both  the x and y axes. “1’hc  saddle  and center periodic orbits
will only satisfy onc of the above sylnmctry  conditions. ]n the following nulnerical  studim we
choose two basic ellipsoid to illvcstigate,  one based on the asteroicl Vests, which may bc classified
as a ‘J1ypc 1 asteroid, and the other based on the asteroid Eros, which ~nay lm c.lassifiecl as a ‘1’ypc
11 asteroid.

~’he stability co~nprrtations  of the periodic orbits follow well est,ablishcd procedures for
planar periodic orbits (11 CIIOII).  ‘J’he  actual method use.cl is described in Schmws. ‘1’hey involve
c.olnputation  of a characteristic c]rrantity  a which must satisfy the condition Irrl < 1 for the orbit to
bc stable. A similar quantity may be computed which describes the out-of-plane stability of the
orbit.

9 . 1 . 1  Vcstri

‘1’here are fivcbasic families ofperiodic.  orhits  about a“J1ypel  cdlipsoid such as Vmta.  ‘J’hesc are
the direct arrd retrograde orbits which lravea doul]le syrnrnetry  property,  andthc periodicorbits
associated with the saddle and center equilibr-iurn  poirrts, which have a single syrnrnctry  property.
Additionally, there  arc the four equilibrium poirlts  surrourlding  the ellipsoid.

Scc Appendix A for a list ofthc physical properties of the ast,croid  Vcsta. ‘1’henorlnalized
c]uantitim  are used for the following computations, ‘I’lrcsaddlcc  x]uilibriurnp ointsarelocatcd at:

x~ = +1.94097 (118)

c/5 = 5.565129 (119)

‘I’hc  center  cquilibriumpoint  sareloc  ated a t :

Yc =  *1.92377 (120)
c’/c == 5.531994 (121)

‘J’hcsaddlc  periodic. orbits areunstab]e,  silnilarto  t, hell ill problem (Ilenon).  The  center
periodic orbits arc st,ablein general. q’here arc two familiesof these orbits associated with each
center  cquilibriurn  point. Analogous to the periodic orbits  assoc. iatcd  with the triangle equilibrium
point, sin the Restricted 3-}lody l'roblcrl~, tllcsctwo farr~ilics  rrlaybcd  istirlgllislled as a long period
family and as a short period  falnily.  In ourprcsentation  swcshowonl  ytheshort  pm-iodfarni]y.

As expected, tllcfarllily ofretrograde  ])crioclic.  orl>itsa rcallstaLlc. Noi,c that thcfarni]yof
direct orbits at Vests are also stal>lc, except  for some srnal] regions of rnargirral stability or small
instability. This strengthens the assertions of the previous scc.tion rwgardingrl’ypc  1 cl]ipsoids,  as it
is clearly possible for a satellite to follow a stable, direct  orbit  at fairly low altitudes. ‘J’here also
exists a family of stable direct orbits which lie, in the lnost  part, at a]ower a]t,itudctharl the
cquilibriurn  points. l’his  family has  not been investigated for this prcscmtation.

l~igure 3showsthcpcriodic  orbit farniliesas linesin thexO,  Cspace, where ZO is the initial
coordinate along the x-axis  and C is the energy of the orbit. From these two pieces of inforvnation
the periodic orbit rnaybc  constructed, as the cr~ergy  C rnayhetranslatcd  into an initial velocity y.
which is perpcmdicu]ar  to the x-axis. ‘J’his plot shows the direct, retrograde and sadd]e  periodic
orbit families. “J’hc cerrtmr periodic orbit farnilyis also shown, with its initial y. coordinate p]ottecl
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Figure 3: Periodic Orbit l’a~nilics About Vcsta

along the x-axis. Note that with this plotting convention, the saddle and center  periodic orbit
fanlilies  lie very close to one another.

Figure 4 shows samples of a direct, rwtrogradc, sadclle and center periodic. orbits. Note that
the direct, retrograde and center periodic orbits  in this plot are stable. ‘1’he saddle periodic orbit is
unstable, Also shown are two of the equilibriuTrl points. Note that the saddle and center  orbits and
point,s have associated mirror images located on the other side of the asteroid. “J’hcsc  are not
shown in I,hc figure.

9.1.2  EI’OS

‘J’hcel]ipsoid based on the asteroid Eros isa TypclI ellipsoid. lrora Typcll ellipsoid there  arc
only three  basic families of periodic orbits. For these hodics  the center  points no longer generate
periodic. orbits in their vicinity. ‘1’his is due to the local nature ofthc phase  spaee about t,hcse
equilibriu~n points} as closed orbits cannot  be constructed in the linear  systcnn close to the center
poiJ)ts.

“I’hcparametcrs used fortheellil)soid hasedon Erosarcalsol isted in Ap])cmdixA.  Note
t}lat, for convenicnc.c,  the density was chosen so that 6 == 1. ‘1’hc norlnalized quantities are used for
the following computations. l’he saddle equilibriulnpoints areloc.atccl at:

X8 =  +1.1926 (122)

C, = 1.6965 (123)

‘J1he center equilibriuln  points arc located at:

Yc =  &O.92689 (124)
(7C = 1.42333 (125)

‘J’he presentation of the direct, retrograde and saddle periodic. orbit falnilim  for the ellipsoid
based 0]1 Eros arc shown in Figure 5, ‘] ’he definitions and interpretations of these  orbits remains as
before. ‘J1hmc  are some differences for these fa~nilies, however. First, as ment  ioncd before, there are
no periodic orbit families which begin at the center equilibrium points. “J1his is due to the complex
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Figure 4: Salnp]e  l’erimlic. Orbits About  Vesl,a

u]lstablc  nat,urc of these points, as it becolnes  ilnpossible  to consh-uc.t a closed orbit in the
ilnlncxliatc  region of the phase space surrounding the equilibrium point. Also note that the direct
orbits become unstable at a distance of 1.85 normalized units froln the long e~ld of the ellipsoid (at
a radius of 37 km), ancl remains so for the remainder of the family, except for the slnall  regions
where the fa~nil  y curve passes through an cxtrelnun~ with respect to the energy C. Again, this
highlights the danger of orbiting a “1’ypc  11 ellipsoid in a direct  orbit within this distance as the
unstable  lnanifolcl of these orbits tend to intersect the ellipsoid, Conve.rscly, as lnight  be expected,
the retrograde orbits are stable throughout, the falnily.  ‘1’hus these may be c.onsidercd to be ‘{safe”
orllits  in which to fly close to such an asteroid.

Not disccrnab]e  from Figure 5 is that the line defining ihc direct family of periodic orbits
tervninatcs  as a spiral in the (*0, C) plane. ‘1’he stability parameter a seemingly becomes
arbitrarily large as the family is continued along this curve, although this is still  an open matter.
Also note the relatively larger separation between the saddle family and the direct family in Figure
5. Co]npare  this  to the family given for Vests in Figure 3.

in Figure 6 are some samples of periodic orbits about the ellipsoid based on Eros. ]n this
])lot the direct and saddle orbits are unstab]c  while tllc rcirogradc  orbit  is stable.

9.2 Three-Dimensional Orbits

Next a falnily  of out-of-plane pcrioclic orbits is computed for the lkos based q’ype 11 ellipsoid. ‘1’his
falnily  is synchronous with the rotating ellipsoid in t})at it only views one side of the ellipsoid as
the orbit is traversed. l’hc  family is generated Inainly  froln onc syll]lnetry  boundary condition,
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Figure 5: l’eriodic. Orbit  Jarnilics  About Eros

although one of the lnembers  of the family has two distinct sylnllletry  boundary conditions, the
second condition being

2:0 = 0
Yo = Yo
20 = 20

io = &o (127)

Y(I=O
.&l = o.

‘J’hesc symlnetry  boundary conditions arc found by c.olllpounding the previously stated initial
conditions given in Section 5.

For the colnputation of these orbits, a total of six boundary conditions Il]ust be met. In
general, thrm of theln  are met  by specifying the initial conditions: ZO = O, ZO = O, yO = O. ‘J’hc
fourth boundary condition is met by proper choice of the ]’oinc.ar~  ]nap surface: z] = O. ‘1’his
leaves the two boundary conditions x] = O and yl = O. ‘lo ac.hicvc these boundary conditions, wc

,..
may vary three  parameters, the ln)tla]  conditions: yO, tie, ZO.‘ Denote  the genera] solution for the
l’oin car+ map as:

2!] = g(xo, io,~o) (128)

YI = /L(xo,io,io) (129)

‘1’hc rmnaining  variables yl,  il, il are free. ‘1’bus, coinputing  the periodic orbit is cquiva]ent  to
solving the equations:

o = g(zo,io,io) (130)
o = /L(&, io, io) (131)

‘I’hu  sit iscvident that thcfalnilyofthesc  three-dirncxlsional  periodic orbits  maybe  described asa
lil~ci~l tl]ctllrec-dilncI~  sionalirlitial col~ditiol~s}~acc:  yo,  io, zo.‘ Note that one of these initial
variables may bc replaced by the energy C.
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Select members of this family are presented in Figures 7-9. ‘1’he three-dilnensional  orbits
have been projected into the three planes: x x y, y x z, z x x. Note that only the portion of the
orbits with z z O have been plotted. Also note that the periodic orbit  with double sylnmetry  is
denoted by the solid line in the Figures.

Final] y, in Figure 10 is a three-  di~nensional re.prc.sentation  of the c]oubly  sylnrnetric. orbit
and in Figure  11 is a three-dimensional representation of the periodic orbit  which intersects the
ellipsoid. in both  plots the ellipsoid is drawn in the foreground. ‘1’hus the orbits are behind the
ellipsoid, from our perspective.

‘1’he three-dimensional falnily  is traced froln intersection with the ellipsoid to an intersection
of the falnily  with a tl~rcc-diri~el~siol~al orbit with a double  sylnmetry.  l’his cloub]e  symmetry
falni]y  lnay be continued, although it appears that the topology of this fa]ni]y is co~np]icated  and
not conducive to the usual Inethods  of continuing fa~nilies of orbits.

‘1’he orbits may be associated with the center equilibriuln  point,s as they lie close to the]n in
the plane. Note that the double  symmetry orbit intersects the y-axis in the close vicinity of the
center equilibriuln  point. ‘1’he orbit  intersects the axis at y = 0.9221 while the center  equilibrium
point is at y = .9269. ‘1’he energy of this double syln~netric  orbit  is C = 0.7752, which compares
with the energy CC = 1.4233 for the center e.quilibriuln  point. Further]  nore, if the falni]y  of doubly
sylnmetric  periodic orbits is continued, at some point they  cross  through the center equilibrium
]~oint coordinates on the y-axis. l’he relation between the cent,er equilibriu]n  points and these
three-dilnensional orbits are not fully understood and will bc a topic of interest for future study.

All Incrnbers  of this falnily  are unstable. q’he stability para]neters  of these orbits are
col)lputecl  following the description in Reference M arch a]. W bile the probleln  discussed there is
clifferent,  the basic  stability conditions may be reduced to a silni]ar  formulation. As lnentioned,  for
all the lr]elnbers  of the fa]nily, the orbits are highly unstable.

10 Analytic Approximations for Non-Synchronous Motion
Finally some si~nple approximations are discussed which may be introduced to this probletn.  l’his
approximation assumes that the satellite orbit is not near-synchronous with the ellipsoid rotation
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rate, and then replaces the ellipsoid with an equivalent oblatc  body. ‘1’his approximation is seen to
work rather well when the satellite is in a retrograde orbit about the ellipsoid, although there are
so]ne fundalnenta]  li~nits to the applicability of the analysis.

10.1 Derivation of a Simplified Force Potential

Restate the gravitational potential for tile ellipsoid in spherical coordinates, assuming that the
potential has been expanded to the second order in the inertial integrals:

[

~=-/il_
& (a’ +-~’  - 272) (3sin20-  1)

r

+-3 (@z – 02) COS2 ec.os 2(ut – 4) -t “ ~ “] (132)

where O is the declination angle measured from the ellipsoid equator and ~ is the right ascension
angle ]ncasured  fro~n the ~-axis.

Now introclpc.e a particular assu)nption,  that the satellite is not near synchronous with the
ellipsoid, or Iw — ~1 >>0. ‘1’his assumption is valid if the satellite is in a near  circular orbit  far froln
the body, or if the satellite is in a retrograde orbit with rcspec.t to the ellipsoid rotation pole.
Further, in each of these cases it will be approximately true that ~ == ~t,  over short intervals of
tilnc al least. llnder these  assumptions it is reasonable to replace the potential in Equation 132
with
scale

Lhc potential averaged in time over one revolutioll  of tllc ellipsoid, or soInc other appropriate
tilne:

7’

V=J JY’ ~ V(t)dt

l’erform the averaging

(133)

and note that the quantity J2 may be identified as:

‘1’his definition of J2 has dimensions of length squared, often this paralneter is normalized by

(134)

dividing by the largest dimension of the ellipsoid squared. l’erfor]rling the averaging and Inaking
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tJIc rep]acemcnts  yields the result:

[
V  =  ~ l--*(3 sin20- l)+...

1
(135)

‘1’hus tlhc ellipsoid is replaced by an equivalent oblate spheroicl  of the same lnass,  with the
Pril]lary  perturbation term being the .lZ tmvn. Note that this is similar to replacing t}lc tri-axial
cl]ipsoicl with the ellipsoid of revolution with a = ~, while keeping the paralneter 6 constant.

While  achnittecl]y a simple approximation, it nonetheless proves to be accurate enough in
lnany  cases to serve as au appropriate design lnodel for pre-mission  planning for lnissions  i,o small
bodies.

30.2  Secular Changes in the Orbital Elements

Given the canonical forvn of the potential in Equation 135, a wealth of information exists
pertaining to satellite orbits about such a body. “1’he results of immediate interest are the secular
rates of c.hangc of the orbital elements of a satellite orbiting the ellipsoid. Denote  the usual orbital
elelncnts  as: a, the selni-major  axis; e, the eccentricity; i, the inclination; w, the argu]ncnt  of the
peria])sis; Q, the ascending node; A4, the mean anolnaly.

Now borrow directly from the well-estab]ishecl theory of secular perturbations due to the Jz
ob]atcness  term. Restating directly fro]n I)anby  (equations I I .] 5.6), the secular rates of Change are:

rla~
Z“”
de.
zr=o
di~
z

= 0

dw,
dl = 37LJ2 [~si’12 i-21–2rP(l – e’) 2

(136)

(137)

(138)

(139)
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dfl, 311Jz
rll = –2aql – C2)2 Cosi

dM~——
[

3J2 f~si112i-1)]
rlt = 71 1–2a2(]_c2)3/2

(140)

(141)

where n = -. ‘1’hc subscript s denotes  the secular part of the clclncnt.
These results lnatcll  well with the stability results found for the dircc.t  orbits far fro~n the

cdlipsoid and for the retrograde orbits about the ellipsoid. Further, c.o~!lparisions  between the above
sil~-]])lcforlr]lllae and nulnerical  integrations of satellite orbits  about an ellipsoid show overall
qualitativea grccrncmt, and close quantitative agreement, for retrograde orbiters at inclinations
bdOW  E–25”.

A current research effort is beil~gll~ade wllicll il]ves(igatessa telliteIn otiol~ab out an ellipsoid
of revolution about its rotation axis. ‘1’he results fro~n  this owgoing  analysis will have bearing on
this currrmt approximation and lnay allow for lnoreprecisc results.

10.3 Numerical Results for Eros and Vests

in concluding this section, representative nodal regression rates for a circular orbit at Eros and
Vesta arc presented. This is to indicate that, the nodal  regression rates that a satellite will face
when orbiting an asteroid may be quite  large, Inaking  the satellite orbit significantly non-l{eplcrian.

ASSUInC that the satellite is in an orbit, of inclinatio~l ~ = –45°, cc.cclltricity ~ = I), and
semi-lnajor axis a = 2a. Note that the inclination is negative, indicating a retrograde orbit.

1 0 . 3 . 1  E r o s  Clmractcristic Noclc Regrc;ssion Rate

Jz-—
tiz

= 0.08775

}1 =  8 . 7 9  x 1 0-4  km3/s2

il, = –13.5 deg/day

(142)

(143)

(144)
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Figure 10: ‘l’hree-l)ilnensional,  l)o[tl]ly-Syllllrletric  l’eriodic  Orbit

10.3 .2  Vcsta Charactcwistic Noclc Regression Rate

JZ
2

= 0.05116 (145)

\i = 14.257 km3/s2 (146)

b. = –20.8 deg~day (147)

‘J’hc above regression rates have been verified with numerical integration sanclarecorrect  to
the order of one clegree/clay.  q’hese results highlight, how even “stable” orbits about an asteroid
lnay still  be significantly non-K eplcrian  and have active dynalnim  in quantities such as the node
and argu~nent of thepcriapsis, Note that the secular changein the argulncnt  of the periapsis  will
be of the sa~lle order as the regression in the node in genera].

11 Conclusion
‘Jle research described in this paper defines the problelrl of satellite dynamics about a tri-axial
ellipsoid and arrives at some elementary results for this prohlmn.  All necessary forvnulae  necdccl to
compute the forces and partia]s for a satellite or-biting a tri-axial c]lipsoid have been presented.
‘1’hc problem has also been non-dilnensionalized  and shown to depend on only three parameters;
two shape parameters and onc parameter relating the mass, size and rotation rate of the ellipsoid.

“J%e zero-velocity surfaces of a satellite in orbit about the ellipsoid have been defined and
dcscrihed,  All synchronous circular orbits about the ellipsoid were found as well as the conditions
for their existence. ‘1’hc  stability of these synchronous circular orbits  were discussed and two
classes of ellipsoids were defined according to whether any of the synchronous orbits were stable or
JIOt. So]ne  spcc.ific  computations of periodic orbit  families were presented for two representative
ellipsoids, based on actual asteroids. One of the orbit  families discussed was three-dimensional,
whi]c  the rest lay in the ellipsoid equator.

in the discussion, several itelns of interest were raised which ~nerit further study.  “1’hcse
it,e~ns include further investigation of the periodic orbit fami]ics,  analytic representation of the
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periodic orbits mnanating  from the equilibrium points, and improvmncnts  to the approxilnatc
theory  of retrograde orbiters.
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A Example Asteroids and Comets
Following is a table giving some of the known, measured physical characteristics of a few asteroids
and co~nets. Note that the density values arc not well known and are uncertain.

Nalne

Vcsta
Eros
Gaspra
]da
‘1’cmpe] 2

l’ype

1
11
II
11
11

(k;l)
265
20
9.5
26
8

(k%)
250

7
6

10.7
4.25

(k~rr)
220

7
5.5
10.7
4.25

2T/u
(hours)

5.3
5.27

7
5

8.95

(J’cc.)
3.5–-

3.21
3.5
3,5
1.0

,.

k
0.94
0.35
0.63
0.41
0.53

L)
0.83
0.35
0.58
0.41
0.53

&
7.06
1.00
5.75
1.36
2.07

fhiu
(g/cc)
0.867
0.354
0.576
0.404
0.508

B Computation of the Elliptic Integrals

‘] ’he cllil~tic iutemals defined by the ellipsoid potential function fall into forlns  that cau be directly
colnputed  using published algorith~ns.  l~irst, recall the general forln of the integral:

w

/[

X2 2 z’v=? ——— - -  –
4A ~2+u+-p2y+u+72+_u  1 1
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‘1’he Carlson  form of the elliptic. integrals used in our study arc clefincxl as:
cm

1{1((?’, /32, 72) = ~ /
du

2 c1 /@Tq@ +  11)(72 +-u)
3m

/

du
Rr)(cP, /3’,72) = ——-

~ o (-p + u)~ + ?l)(p +- U)(Y’  +-u)

Note that, the function RI is symmetric in all its arguments, but  that the function ltIj is
sylnmetric.  only in its first two argutnents.

lJsing these for~ns,  the potential may be written as:

A ( u )  = ~(d -t U)(8’ + u)(-)” + u)

(148)

(149)

(150)

(151)

+-;2%(CF +- A,@z + A,Y2 + A) – :RF(a’+- A,@’ + A,72 +J) (152)

Recalling that dV/8A  E O, the force partials are then:

v. = Zmr)(pz  + A,y’ + A, CY’+A) (153)

Vv = yRD(y’  + A,a’ - t  A,p2 +-A) (154)

v. = 2Rn(@2 + A,p + A,y’  + A) (155)

Algorithlns  for colnputing  the functions ltl~ ancl RI, arc given in Reference [6], Section 6.11.
‘1’he  algorithms use a method  similar to hlacl,aurin’s  ‘1’heorem to uniformly rescale  the function
argulncnts  until they arc approxilnate]y  equal, at which point a ‘1’aylor series expansion may be
introduced to explicitly solve for the value of the function.

J3.1 A Special Identity

“1’hc  idc.ntity stlatccl in Equation 99 is derived here, ‘J’his salnc  identity is usecl elsewhere in the
paper to simplify some of the stated results.

‘1’he identity is:

(156)

(157)

‘1’o  prove this result, differentiate the quantity 1 /A(u) with respect to the parameter u, ‘1’his
results in the equality:

dA(u)-l

[

–1 1 1 1

1
1—  —  —

du = T ~2fl-u+/3Z+u+;Z+u  A ( u )
— - .

Now integrate the quantity over the paralneter u from limits v to cm to find:

(158)

Jw dA(u)-l
du, =

H
–1 w

du
1

1
1

du T“ *U - t  — ’ — -  +- —  —
u p’+ u -y’ + u A ( u )

(159)
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‘1’he left, hand side of the  equation may he integrated exactly to yiclcl:

/

m dA(u)-l 1 1
du =  —-–—

(IU A(cm) A(v)
(160)

u
1

=—
A(v)

(161)

‘I’]~cidcl]t)ity  tllell falls clirmtly out of the results.
‘J’hisidentit,y  is]nost useful in reducing thcsi,ability condition devaluated at the equilibrium

points. II] tcrmsofthc Carlsonforln of the cllipticintcgrals, this identity is stated as:
.

13.2 Reductions to Special Cases

Given in the paper are several results which rely ON the cvaluatiol)  of these  elliptic integrals for
soIne simplified cases, na~nely CY = ~, /3 = y and a = /3 = y. ]n all these casm the elliptic integrals
degenerate  into  quadrature which may bc expressed in tcmns of elmncntary  functions. ‘l’he
c.olnputation  of I,hc function RD under all these special cases are listed below.

11,2,1  cY =/3=-y

(163)

1
=

CP+A
(164)

13.2.2 G >  p= y

(167)

(169)
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